Robust parallel eigenvector computation for the non-symmetric eigenvalue problem
نویسندگان
چکیده
منابع مشابه
A blocked QR-decomposition for the parallel symmetric eigenvalue problem
In this paper we present a new stable algorithm for the parallel QR-decomposition of ”tall and skinny” matrices. The algorithm has been developed for the dense symmetric eigensolver ELPA, whereat the QR-decomposition of tall and skinny matrices represents an important substep. Our new approach is based on the fast but unstable CholeskyQR algorithm [1]. We show the stability of our new algorithm...
متن کاملA fully parallel algorithm for the symmetric eigenvalue problem
In this paper we present a parallel algorithm for the symmetric algebraic eigenvalue problem. The algorithm is based upon a divide and conquer scheme suggested by Cuppen for computing the eigensystem of a symmetric tridiagonal matrix. We extend this idea to obtain a parallel algorithm that retains a number of active parallel processes that is greater than or equal to the initial number througho...
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملA New O(n^2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem
A New O(n) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem by Inderjit Singh Dhillon Doctor of Philosophy in Computer Science University of California, Berkeley Professor James W. Demmel, Chair Computing the eigenvalues and orthogonal eigenvectors of an n n symmetric tridiagonal matrix is an important task that arises while solving any symmetric eigenproblem. All practica...
متن کاملA subspace preconditioning algorithm for eigenvector/eigenvalue computation
We consider the problem of computing a modest number of the smallest eigenvalues along with orthogonal bases for the corresponding eigenspaces of a symmetric positive definite operator A defined on a finite dimensional real Hilbert space V . In our applications, the dimension of V is large and the cost of inverting A is prohibitive. In this paper, we shall develop an effective parallelizable te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Parallel Computing
سال: 2020
ISSN: 0167-8191
DOI: 10.1016/j.parco.2020.102707